MATH 4530: HOMEWORK \#6

- Due Friday, October 13th at 11pm.
- To be submitted on the course gradescope.
- Please remember to indicate which pages your solutions to each problem appear on.
- $\S n$: $\# m$ refers to exercise number m from the exercise list following Section n of the textbook (Topology, Second Edition by James R. Munkres).
- You are encouraged to discuss the problems in groups. However, you must write your solutions individually!

Problems.

(1) §23: \#2
(2) §23: \#6
(3) §23: \#11
(4) Let $\left\{X_{\alpha}\right\}_{\alpha}$ be a family of topological spaces. Recall that the disjoint union $X=\bigsqcup_{\alpha} X_{\alpha}$ has underlying set $\bigcup_{\alpha}\left(\{\alpha\} \times X_{\alpha}\right)$ and has topology $\mathcal{T}=\left\{U \subset X \mid U \cap\left(\{\alpha\} \times X_{\alpha}\right)\right.$ is an open subset of $\{\alpha\} \times X_{\alpha}$, for each $\left.\alpha\right\}$ where $V \subset\{\alpha\} \times X_{\alpha}$ is open if and only if $V=\{\alpha\} \times V^{\prime}$ for some open subset V^{\prime} of X_{α}.
(a) Prove that the disjoint union topology is the finest topology on $\bigsqcup_{\alpha} X_{\alpha}$ for which each inclusion map $\{\alpha\} \times X_{\alpha} \hookrightarrow X$ is continuous.
(b) Prove that if each X_{α} is a one-point space then the disjoint union topology on $\bigsqcup_{\alpha} X_{\alpha}$ is discrete.
(c) Prove that the disjoint union of at least two non-empty spaces is disconnected.
(5) Sometimes we would like to define an equivalence relation on a set X without having to explicity define every pair of related elements. The equivalence relation generated by a set of unordered pairs $\mathcal{P}=$ $\left\{\left\{x_{\alpha}, y_{\alpha}\right\}\right\}_{\alpha}$ of elements of X is the equivalence relation \sim given by $x \sim y$ if and only if there exists $x_{1}, x_{2}, x_{3}, \ldots, x_{n} \in X$ with $n \geq 1$ such that $x=x_{1}, y=x_{n}$ and $\left\{x_{i}, x_{i+1}\right\} \in \mathcal{P}$ for each $i \in$ $\{1,2,3, \ldots, n-1\}$.
(a) Prove that \sim is indeed an equivalence relation.
(b) Prove that \sim is the smallest equivalene relation for which $x_{\alpha} \sim$ y_{α} for every α. (This amounts to proving that any equivalence relation \approx for which $x_{\alpha} \approx y_{\alpha}$ for every α also satisfies: for every $x, y \in X$, if $x \sim y$ then $x \approx y$.)

1 of 2
(c) Let X be the disjoint union of a one point space $\{p\}$ and three copies of the interval $[0,1]$. For convenience, let r_{i} denote the copy of $r \in[0,1]$ coming from the i th copy of $[0,1]$. For example, 0_{2} is the endpoint 0 of the second copy of $[0,1]$ in X. Let \sim be the equivalence relation on X generated by $\left\{\left\{0_{1}, p\right\},\left\{0_{2}, p\right\},\left\{0_{3}, p\right\}\right\}$.
Find a subspace of \mathbb{R}^{2} that is homeomorphic to the identification space X / \sim. Make an image of (e.g. draw) this subspace. Prove that your subspace is indeed homeomorphic to X / \sim.

