MATH 4530: HOMEWORK #6

- Due Friday, October 13th at 11pm.
- To be submitted on the course gradescope.
 - Please remember to indicate which pages your solutions to each problem appear on.
- \S{n} : #m refers to exercise number m from the exercise list following Section n of the textbook (Topology, Second Edition by James R. Munkres).
- You are encouraged to discuss the problems in groups. *However*, you must write your solutions individually!

Problems.

- (1) $\S23: \#2$
- (2) $\S23: \#6$
- (3) §23: #11
- (4) Let $\{X_{\alpha}\}_{\alpha}$ be a family of topological spaces. Recall that the disjoint union $X = \bigsqcup_{\alpha} X_{\alpha}$ has underlying set $\bigcup_{\alpha} (\{\alpha\} \times X_{\alpha})$ and has topology
- $\mathcal{T} = \left\{ U \subset X \mid U \cap \left(\{ \alpha \} \times X_{\alpha} \right) \text{ is an open subset of } \{ \alpha \} \times X_{\alpha}, \text{ for each } \alpha \right\}$

where $V \subset \{\alpha\} \times X_{\alpha}$ is open if and only if $V = \{\alpha\} \times V'$ for some open subset V' of X_{α} .

- (a) Prove that the disjoint union topology is the finest topology on $\bigsqcup_{\alpha} X_{\alpha}$ for which each inclusion map $\{\alpha\} \times X_{\alpha} \hookrightarrow X$ is continuous.
- (b) Prove that if each X_{α} is a one-point space then the disjoint union topology on $\bigsqcup_{\alpha} X_{\alpha}$ is discrete.
- (c) Prove that the disjoint union of at least two non-empty spaces is disconnected.
- (5) Sometimes we would like to define an equivalence relation on a set X without having to explicitly define every pair of related elements. The equivalence relation generated by a set of unordered pairs $\mathcal{P} = \{\{x_{\alpha}, y_{\alpha}\}\}_{\alpha}$ of elements of X is the equivalence relation \sim given by $x \sim y$ if and only if there exists $x_1, x_2, x_3, \ldots, x_n \in X$ with $n \geq 1$ such that $x = x_1, y = x_n$ and $\{x_i, x_{i+1}\} \in \mathcal{P}$ for each $i \in \{1, 2, 3, \ldots, n-1\}$.
 - (a) Prove that \sim is indeed an equivalence relation.
 - (b) Prove that ~ is the smallest equivalence relation for which x_α ~ y_α for every α. (This amounts to proving that any equivalence relation ≈ for which x_α ≈ y_α for every α also satisfies: for every x, y ∈ X, if x ~ y then x ≈ y.)

(c) Let X be the disjoint union of a one point space $\{p\}$ and three copies of the interval [0,1]. For convenience, let r_i denote the copy of $r \in [0,1]$ coming from the *i*th copy of [0,1]. For example, 0_2 is the endpoint 0 of the second copy of [0,1]in X. Let ~ be the equivalence relation on X generated by $\{\{0_1, p\}, \{0_2, p\}, \{0_3, p\}\}.$

Find a subspace of \mathbb{R}^2 that is homeomorphic to the identification space X/\sim . Make an image of (e.g. draw) this subspace. Prove that your subspace is indeed homeomorphic to X/\sim .