MATH 4530: HOMEWORK #7

- Due Friday, October 20th at 11pm.
- To be submitted on the course gradescope.
 - Please remember to indicate which pages your solutions to each problem appear on.
- \S{n} : #m refers to exercise number m from the exercise list following Section n of the textbook (Topology, Second Edition by James R. Munkres).
- You are encouraged to discuss the problems in groups. *However, you must write your solutions individually!*

Problems.

- (1) $\S23: \#10$
- (2) §24: #1
- (3) §24: #8
- (4) §24: #10
- (5) §24: #11
- (6) We will define the notion of an *n*-dimensional cellular complex by induction on $n \in \mathbb{N}$.

Base case n = 0: A 0-dimensional cellular complex $X^{(0)}$ is a topological space whose topology is discrete.

Inductive step n > 0: Let $X^{(n-1)}$ be an (n-1)-dimensional cellular complex. Let $(f_{\alpha}: S^{n-1} \to X^{(n-1)})_{\alpha \in A}$ be a collection of continuous functions from the (n-1)-sphere

$$S^{n-1} = \left\{ (x_i)_{i=1}^n \in \mathbb{R}^n : \sqrt{\sum_{i=1}^n x_i^2} = 1 \right\}$$

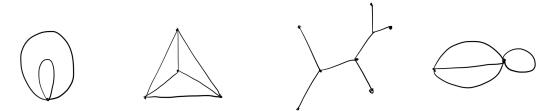
and recall that S^{n-1} is a subspace of the *n*-ball

$$B^{n} = \Big\{ (x_{i})_{i=1}^{n} \in \mathbb{R}^{n} : \sqrt{\sum_{i=1}^{n} x_{i}^{2}} \le 1 \Big\}.$$

Consider the disjoint union $Y_n = X^{(n-1)} \sqcup \bigsqcup_{\alpha \in A} B^n$. For convenience, we write x_{α} , with $x \in B^n$, to denote the copy of x in the α th copy of B^n in the subspace $\bigsqcup_{\alpha \in A} B^n$ of Y_n . We also identify $X^{(n-1)}$ with its copy in Y_n . Let \sim be the equivalence relation on Y_n generated by $\{\{x_{\alpha}, f_{\alpha}(x)\} : \alpha \in A \text{ and } x \in S^{n-1}\}$. Consider the identification space $X^{(n)} = Y_n/\sim$.

An *n*-dimensional cellular complex is a topological space $X^{(n)}$ obtained in this way from an (n-1)-dimensional cellular complex $X^{(n-1)}$ and a collection of continuous functions $(f_{\alpha}: S^{n-1} \to X^{(n-1)})_{\alpha \in A}$. The f_{α} are called the *attaching maps* of the *n*-cells of $X^{(n)}$. Since ~ cannot relate distinct points of $X^{(n-1)}$, the spaces $X^{(k)}$, $k \leq n$ are all naturally subspaces of $X^{(n)}$. The subspace $X^{(k)}$ is known as the *k*-skeleton of $X^{(n)}$. For the same reason, the interiors $B^k \setminus S^{k-1}$, $k \leq n$, of all the copies of balls that appeared in the construction of $X^{(n)}$ are all also naturally subspaces of $X^{(n)}$. Each of these and each point of $X^{(0)}$ is called a *cell* of $X^{(n)}$. In fact, the collection of cells of $X^{(n)}$ forms a partial of $X^{(n)}$.

Note that when n = 1, we have $S^{n-1} = S^0 = \{-1, 1\} \subset \mathbb{R}$ and $B^n = B^1 = [-1, 1] \subset \mathbb{R}$. So 1-dimensional cellular complexes are quotients of disjoint unions of 1-point spaces and closed bounded intervals of \mathbb{R} obtained by identifying endpoints of intervals with points. Here are some examples of 1-dimensional cellular complexes, which are also known as graphs.



- (a) Prove that graphs are Hausdorff. (In fact, this holds for all cellular complexes.)
- (b) Describe the 2-sphere S^2 and the torus $S^1 \times S^1$ as 2-dimensional cellular complexes. As starting points, you may use the descriptions of the sphere and torus as identification spaces from class or from the textbook.