MATH 4530: HOMEWORK \#8

- Due Friday, October 27 th at 11 pm .
- To be submitted on the course gradescope.
- Please remember to indicate which pages your solutions to each problem appear on.
- $\S n$: \#m refers to exercise number m from the exercise list following Section n of the textbook (Topology, Second Edition by James R. Munkres).
- You are encouraged to discuss the problems in groups. However, you must write your solutions individually!

Problems.

(1) §25: \#2
(2) §25: \#5
(3) §26: \#4
(4) §26: \#5
(5) §26: \#11
(6) For a finite set V, let \mathbb{R}^{V} be the free real vector space on V. That is, the elements of \mathbb{R}^{V} are formal sums $\sum_{v \in V} r_{v} v$ where each r_{v} is a real number. We have the standard operations of addition and scalar multiplication.

$$
\sum_{v \in V} r_{v} v+\sum_{v \in V} r_{v}^{\prime} v=\sum_{v \in V}\left(r_{v}+r_{v}^{\prime}\right) v \quad t \sum_{v \in V} r_{v} v=\sum_{v \in V}\left(t r_{v}\right) v
$$

Figure 1. The simplex $\sigma_{V} \subset \mathbb{R}^{V}$ on a set V of size 3. The coordinate axes of \mathbb{R}^{V} are indicated by black lines. The solid dot indicates the origin in \mathbb{R}^{V} and the open dots are the standard basis vectors, which we can view as elements of V.

Figure 2. A simplicial complex, drawn as though embedded in \mathbb{R}^{3}. The 0 -simplices are indicated by black dots, the 1 -simplices are indicated by line segments and the color-filled regions indicate the presence of a higher dimensional simplices. There are eighteen 0 -simplices, twenty-three 1 -simplices, eight 2 -simplices and one 3 -simplex. The simplicial complex is disconnected with 3 components.

We can view $v \in V$ as the formal sum whose only term is v. In this way we can view $V \subset \mathbb{R}^{V}$ as the standard basis of \mathbb{R}^{V}. Moreover, since \mathbb{R}^{V} is isomorphic to \mathbb{R}^{n}, with $n=|V|$, we can naturally place a topology on \mathbb{R}^{V}. The simplex σ_{V} on V is the smallest convex subset of \mathbb{R}^{V} that contains V. See Figure 1. Concretely, we have

$$
\sigma_{V}=\left\{\sum_{v \in V} t_{v} v: t_{v} \geq 0, \text { for all } v, \text { and } \sum_{v \in V} t_{v}=1\right\}
$$

from which we can also see that if $W \subset V$ then there is a natural inclusion $\iota_{V W}: \sigma_{W} \hookrightarrow \sigma_{V}$. The simplex σ_{V} is homeomorphic to the ball B^{n} of dimension n, where $n=|V|-1$. We call σ_{V} an n-simplex.
Definition. An abstract simplicial complex is a collection Σ of nonempty sets satisfying the following condition: if $V \in \Sigma$ and W is a nonempty subset of S then $W \in \Sigma$. In symbols: $\emptyset \neq W \subset V \in \Sigma \Longrightarrow W \in \Sigma$.

Definition. Let Σ be an abstract simplicial complex. Let \sim be the equivalence relation on $Y(\Sigma)=\bigsqcup_{V \in \Sigma} \sigma_{V}$ generated by $\left\{\left\{x, \iota_{V W}(x)\right\}: \emptyset \neq W \subset V \in \Sigma\right.$ and $\left.x \in \sigma_{W}\right\}$. The simplicial complex $X(\Sigma)$ realizing Σ is the identification space $Y(\Sigma) / \sim$. See Figure 2.

It turns out that the quotient map $Y(\Sigma) \rightarrow X(\Sigma)$ restricts to an embedding on any simplex σ_{V} in $Y(\Sigma)$ and so we may view the σ_{V} with $V \in \Sigma$ as subspaces of $X(\Sigma)$. In fact, these subspaces are the closed cells (i.e. closures of cells) of a

$$
2 \text { of } 3
$$

cellular complex structure on $X(\Sigma)$. Moreover, the intersection $\sigma_{V} \cap \sigma_{V^{\prime}}$ of two simplices of X is precisely the simplex $\sigma_{V \cap V^{\prime}}$ if $V \cap V^{\prime} \neq \emptyset$ and is otherwise \emptyset.
(a) Let X be a simplicial complex with finitely many 0 -simplices. Prove that X embeds as a subspace of \mathbb{R}^{n}, where n is the number of 0 -simplices of X. Conclude that X is metrizable. (Hint: Let V be the set of 0 -simplices of X. Can you find a natural way to embed X in the simplex $\sigma_{V} \subset \mathbb{R}^{V}$?)
(b) Prove that a simplicial complex is compact if and only if it has finitely many 0 -simplices. ${ }^{1}$ You may use the fact that a subset of a cellular complex is open if and only if its intersection with each closed cell is open.

[^0]
[^0]: ${ }^{1}$ A general cellular complex is compact if and only if it has finitely many cells in total.

