MATH 4530: HOMEWORK \#10

- Due Friday, November 17th at 11pm.
- To be submitted on the course gradescope.
- Please remember to indicate which pages your solutions to each problem appear on.
- $\S n$: $\# m$ refers to exercise number m from the exercise list following Section n of the textbook (Topology, Second Edition by James R. Munkres).
- You are encouraged to discuss the problems in groups. However, you must write your solutions individually!

Problems.

(1) §32: \#3
(2) §51: \#2
(3) §51: \#3
(4) A topological space X is locally n-Euclidean if every point $x \in X$ has a neighborhood U that is homeomorphic to \mathbb{R}^{n}. A closed topological surface is a nonempty, connected, locally 2-Euclidean, compact Hausdorff space. Prove that closed topological surfaces are metrizable. (Hint: Use $\S 32: \# 3$ and the Urysohn Metrization Theorem.)
(5) Let $X=X(\Sigma)$ be a compact simplicial complex. For each $k \in \mathbb{Z}$, let $\Delta_{k}=\Delta_{k}(X)$ denote the set

$$
\Delta_{k}(X)=\left\{\sigma_{V}: V \in \Sigma \text { with } \operatorname{dim}\left(\sigma_{V}\right)=k\right\}
$$

of k-simplices of X. (Note that if k is negative then $\Delta_{k}=\emptyset$.) Let $C_{k}=C_{k}(X)=$ $\mathbb{R}^{\Delta_{k}}$, that is $C_{k}(X)$ is the free real vector space on the set Δ_{k}. We view each k-simplex σ_{V} of X as a basis element of $C_{k}(X)$. Note that if $\Delta_{k}=\emptyset$ then C_{k} is the trivial real vector space \mathbb{R}^{0}, which we denote 0 .

We fix an arbitrary total ordering on $\bigcup_{\sigma \in \Sigma} \sigma$. For $k \in \mathbb{Z}_{+}$, let $\partial_{k}: C_{k} \rightarrow C_{k-1}$ be the linear map that sends each k-simplex $\sigma_{V} \in C_{k}$ to the alternating sum $\sum_{i=0}^{k}(-1)^{i} \sigma_{V \backslash\left\{v_{i}\right\}} \in \mathcal{C}_{k-1}$ where v_{i} is the i th vertex in the restriction to V of the total ordering on $\bigcup_{\sigma \in \Sigma} \sigma$ (i.e. $V=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right\}$ with $v_{0}<v_{1}<v_{2}<\cdots<$ $\left.v_{k}\right)$. For nonpositive k, let ∂_{k} be the zero map.

Notice that, for any $k \in \mathbb{Z}$, the image $B_{k}=\operatorname{im}\left(\partial_{k+1}\right)$ of ∂_{k+1} is contained in the kernel $Z_{k}=\operatorname{ker}\left(\partial_{k}\right)$ of ∂_{k}, or equivalently: the composition $\partial_{k+1} \circ \partial_{k}$ is the zero map. (You do not need to prove this in your solution.) The elements of the vector subspace $Z_{k} \subset C_{k}$ are called k-cycles. The elements of the vector subspace $B_{k} \subset C_{k}$ are called k-boundaries. We can think of k-cycles as "possible holes of dimension k " in X and of k-boundaries as k-cycles that are in fact "filled in" in X.

The sequence of maps

$$
0 \stackrel{\partial_{0}}{\rightleftarrows} C_{0} \stackrel{\partial_{1}}{\leftarrow} C_{1} \stackrel{\partial_{2}}{\leftarrow} C_{2} \stackrel{\partial_{3}}{\leftrightarrows} C_{3} \leftarrow \cdots
$$

is called a chain complex.
The k th homology group of X in real coefficients is the quotient vector space $H_{k}(X)=Z_{k} / B_{k}$. Since we have quotiented out the "filled in" holes We can think of the elements of $H_{k}(X)$ as representing "actual holes" of dimension k in X. It turns out that the homology groups of X depend only on its topology (in fact only on its "homotopy type") and not on its simplicial structure: every homeomorphic (or "homotopy equivalent") simplicial complex has the same homology groups.
(a) (i) Compute the homology groups of $X=X(\Sigma)$ in real coefficients, where Σ is as follows.

$$
\begin{aligned}
\Sigma=\{ & \{1\},\{2\},\{3\},\{4\},\{5\}, \\
& \{1,2\},\{1,3\},\{2,3\},\{2,4\},\{3,4\}, \\
& \{1,2,3\}\}
\end{aligned}
$$

(ii) Find a basis for each nonzero homology group. In a couple of sentences, try to give an intuitive topological interpretation of how these basis elements relate to "holes" in X.
(b) Compute the homology groups of X in real coefficients, where X is the boundary $\partial \sigma_{\{1,2,3,4\}}$ of the 3 -simplex $\sigma_{\{1,2,3,4\}}$, that is, $X=X(\Sigma)$ where Σ is as follows.

$$
\begin{aligned}
\Sigma=\{ & \{1\},\{2\},\{3\},\{4\}, \\
& \{1,2\},\{1,3\},\{2,3\},\{2,4\},\{3,4\},\{1,4\}, \\
& \{1,2,3\},\{2,3,4\},\{1,2,4\},\{1,3,4\}\}
\end{aligned}
$$

2 of 2

